Assessment of change in glucose metabolism in white matter of amyloid-positive patients with Alzheimer disease using F-18 FDG PET
نویسندگان
چکیده
In Alzheimer disease (AD), neuroinflammation is an important process related to the deposition of beta-amyloid plaques and the activation of microglia. The inflammatory process can occur in both the gray matter and the white matter. We evaluated glucose metabolism of the white matter in AD patients and compared the value with cognitive parameters of the patients.Eighteen AD patients and 18 healthy subjects underwent F-18 fluorodeoxyglucose (FDG) and F-18 florbetaben positron emission tomography (PET). After segmentation of the white matter in both PET images, the specific binding ratio (SBR) of the global and regional cerebral white matter was checked. We evaluated the differences in SBR of the global and regional white matter between AD patients and healthy subjects. Then, we assessed the correlation between SBR and cognitive parameters in AD patients.In F-18 FDG PET images, the global white matter SBR was significantly higher in AD patients than in healthy subjects. In the regional analysis, the white matter SBR was significantly higher for the frontal, temporal, and parietal areas in AD patients. In the correlation analysis with F-18 FDG PET, SBR was significantly correlated with the Global Deterioration Scale, Mini-Mental State Examination scores, and amyloid deposition.Glucose metabolism of the white matter was significantly higher in AD patients than in healthy subjects and it was related to the scores of cognitive parameters. We suggest that F-18 FDG PET, like 18-kDa translocator protein PET, could be used as an indicator of neuroinflammation; however, further research is needed for a direct comparison between the 2 tests.
منابع مشابه
The diagnostic difference between 18F- FDG PET and 99mTc-HMPAO SPECT perfusion imaging in assessment of Alzheimer's disease
Introduction:Brain imaging with F-18 fluorodeoxyglucose (18F-FDG) positron emission tomography or Tc-99m hexamethylpropyleneamine oxime (99mTc-HMPAO) SPECT is widely used for the evaluation of Alzheimer's dementia (AD); we aim to assess superiority of one method over the other. Methods: Twenty four patients with clinical diagnosi...
متن کاملBrain PET in the diagnosis of Alzheimer's disease.
OBJECTIVES The aim of this article was to review the current role of brain PET in the diagnosis of Alzheimer dementia. The characteristic patterns of glucose metabolism on brain FDG-PET can help in differentiating Alzheimer's disease from other causes of dementia such as frontotemporal dementia and dementia of Lewy body. Amyloid brain PET may exclude significant amyloid deposition and thus Alzh...
متن کاملWhite matter lesion load is associated with resting state functional MRI activity and amyloid PET but not FDG in mild cognitive impairment and early Alzheimer's disease patients.
PURPOSE To quantify and investigate the interactions between multimodal MRI/positron emission tomography (PET) imaging metrics in elderly patients with early Alzheimer's disease (AD), mild cognitive impairment (MCI) and healthy controls. MATERIALS AND METHODS Thirteen early AD, 17 MCI patients, and 14 age-matched healthy aging controls from the Alzheimer's Disease Neuroimaging Initiative data...
متن کاملDetection of Alzheimer\\\\\\\'s Disease using Multitracer Positron Emission Tomography Imaging
Alzheimer's disease is characterized by impaired glucose metabolism and demonstration of amyloid plaques. Individual positron emission tomography tracers may reveal specific signs of pathology that is not readily apparent on inspection of another one. Combination of multitracer positron emission tomography imaging yields promising results. In this paper, 57 Alzheimer's disease neuroimaging ini...
متن کاملAmyloid Dysmetabolism Relates to Reduced Glucose Uptake in White Matter Hyperintensities
Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder and cause of dementia and is characterized by amyloid plaques and neurofibrillary tangles. AD has traditionally been considered to primarily affect gray matter, but multiple lines of evidence also indicate white matter (WM) pathology and associated small-vessel cerebrovascular disease. WM glucose delivery and metabolism m...
متن کامل